TOPOLOGY II MIDTERM EXAM

Total Marks: 50

- (1) Let $f: S^1 \to S^1$ be a continuous map which is null homotopic. Show that f has a fixed point and f maps some point x to its antipode -x. (7 marks)
- (2) Let $f: S^2 \to S^2$ be a continuous map such that $f(x) \neq f(-x)$ for all $x \in S^2$. Show that f is onto. (7 marks)
- (3) Show that a topological space X is contractible, if and only if, X has the homotopy type of a one point space. (8 marks)
- (4) What is the fundamental group of the complement of a finite set of points in \mathbb{R}^3 ? Justify your answer. (7 marks)
- (5) Does there exist a retraction from the solid torus $B^2 \times S^1$ onto its boundary $S^1 \times S^1$? (7 marks)
- (6) Let X, Y, Z be path connected and locally path connected topological spaces. Let $q: X \to Y, r: Y \to Z$ be covering maps, let p = rq. Assume Z has a universal covering space. Then, show that $p: X \to Z$ is a covering map. (7 marks)
- (7) Draw a picture and describe a two fold path connected covering space of the figure eight. Is this covering space regular or not regular? (7 marks)